前言

本文隶属于专栏《1000个问题搞定大数据技术体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!

本专栏目录结构和参考文献请见1000个问题搞定大数据技术体系

正文

region 中存储的是大量的 rowkey 数据,当 region 中的数据条数过多的时候,直接影响查询效率。

当 region 过大的时候,hbase 会拆分 region , 这也是 hbase 的一个优点 .

HBase 的 region split 策略一共有以下几种

1、ConstantSizeRegionSplitPolicy

0.94版本前默认切分策略

当region大小大于某个阈值(hbase.hregion.max.filesize=10G)之后就会触发切分,一个region等分为2个region。

但是在生产线上这种切分策略却有相当大的弊端:切分策略对于大表和小表没有明显的区分。

阈值(hbase.hregion.max.filesize)设置较大对大表比较友好,但是小表就有可能不会触发分裂,极端情况下可能就1个,这对业务来说并不是什么好事。

如果设置较小则对小表友好,但一个大表就会在整个集群产生大量的region,这对于集群的管理、资源使用、failover来说都不是一件好事。

2、IncreasingToUpperBoundRegionSplitPolicy

0.94版本~2.0版本默认切分策略

切分策略稍微有点复杂,总体看和ConstantSizeRegionSplitPolicy思路相同,一个region大小大于设置阈值就会触发切分。

但是这个阈值并不像ConstantSizeRegionSplitPolicy是一个固定的值,而是会在一定条件下不断调整,调整规则和region所属表在当前regionserver上的region个数有关系.

region split的计算公式是:
regioncount^3 * 128M * 2,当region达到该size的时候进行split
例如:
第一次split:1^3 * 256 = 256MB 
第二次split:2^3 * 256 = 2048MB 
第三次split:3^3 * 256 = 6912MB 
第四次split:4^3 * 256 = 16384MB > 10GB,因此取较小的值10GB 
后面每次split的size都是10GB了

3、SteppingSplitPolicy

2.0版本默认切分策略

这种切分策略的切分阈值又发生了变化,相比 IncreasingToUpperBoundRegionSplitPolicy 简单了一些,依然和待分裂region所属表在当前regionserver上的region个数有关系,

如果region个数等于1,切分阈值为flush size * 2,否则为MaxRegionFileSize。

这种切分策略对于大集群中的大表、小表会比 IncreasingToUpperBoundRegionSplitPolicy 更加友好,小表不会再产生大量的小region,而是适可而止。

4、KeyPrefixRegionSplitPolicy

根据rowKey的前缀对数据进行分组,这里是指定rowKey的前多少位作为前缀,比如rowKey都是16位的,指定前5位是前缀,

那么前5位相同的rowKey在进行region split的时候会分到相同的region中。

5、DelimitedKeyPrefixRegionSplitPolicy

保证相同前缀的数据在同一个region中,例如rowKey的格式为:userid_eventtype_eventid,指定的delimiter为 _ ,

则split的的时候会确保userid相同的数据在同一个region中。

6、DisabledRegionSplitPolicy

  • 不启用自动拆分,需要指定手动拆分
上一篇 下一篇